Rapidly Improved Copper Balance in Wilson Disease Patients on Tiomolybdate Choline

Aftab Ala, MBBS,MD, FRCP, PhD

Institute of Liver Studies, King's College Hospital, London, UK

Thomas Damgaard Sandahl, MD, PhD Aarhus University Hospital, Aarhus, DK

Anna Członkowska, MD, PhD Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, PL

Valentina Medici, MD Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California, Davis, CA, US

Chandler Robinson, MD, MS Monopar Therapeutics, Wilmette, IL, US

Andrew Cittadine, MS Monopar Therapeutics, Wilmette, IL, US

Declan Tuffy, PharmD Monopar Therapeutics, Wilmette, IL, US

Ulrike Lorch, MD Richmond Pharmacology Limited, London, UK

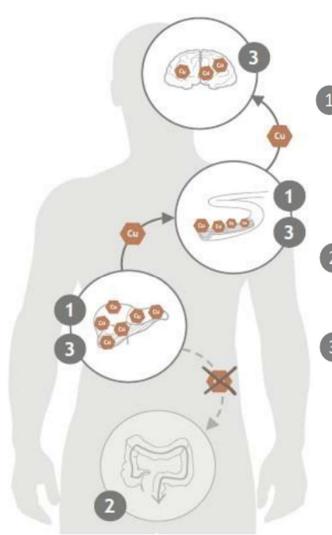
Edward Gane, MD Medical and Health Sciences, University of Auckland, Auckland, NZ

Karl Heinz Weiss, MD Salem Medical Center, Heidelberg, DE

Fred Askari, MD, PhD University of Michigan Health System, Ann Arbor, MI, US

Disclosures

- Research grants from Orphalan, Univar, Ultragenyx, Vivet, Takeda, NIHR, MRC
- Writing: The Lancet
- Advisory Boards: Orphalan, Univar, Arbomed, Prime Medicine, Ultragenyx
- Travel grants from Orphalan, Univar, Monopar Therapeutics, WDA
- Speaker Fees: Orphalan, Univar, Ipsen


Wilson Disease (WD)

Wilson disease is a rare genetic disorder of impaired copper (Cu) transport

Cu accumulates in the **liver** and **brain**, causing organ damage

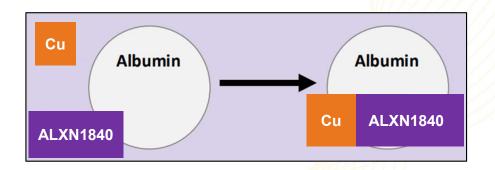
Standard-of-care (SoC) therapies have numerous limitations:

- paradoxical neurological worsening
- complex, multi-per-day dosing
- slow onset of action

Diminished loading of Cu onto the ceruloplasmin (Cp) protein in liver leads to suboptimal transport of Cp- bound Cu into blood

Diminished excretion of excess Cu through the bile into feces

Increased levels of free Cu (toxic) in blood, liver, brain and other organs


ALXN1840 is a Once Daily Oral Small Molecule Therapy for WD

ALXN1840 Tightly Binds Cu

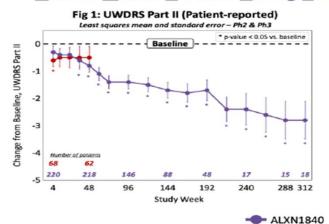
Cu binding affinity (K _d)	
D-penicillamine	2.4 x 10 ⁻¹⁶
Trientine	1.7 x 10 ⁻¹⁷
ALXN1840	2.3 x 10 ⁻²⁰

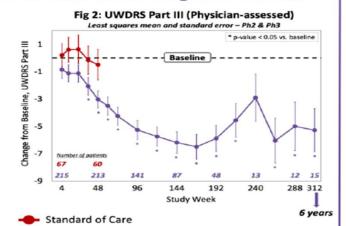
ALXN1840 (MoS₄²⁻, tiomolybdate choline) demonstrates superior Cu specificity and binding affinity compared to currently approved chelators

ALXN1840-Cu-albumin Forms a Tripartite Complex

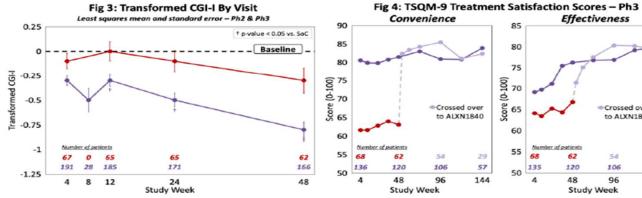
Cu-ALXN1840 forms a strong tripartite complex with albumin, **mobilizing and sequestering** toxic Cu, reducing uptake in the liver and brain¹⁻³

Recap of Recently Presented ALXN1840 Clinical Data





Sustained Long-term Clinical Improvement Over 6 Years


Efficacy

Unified Wilson Disease Rating Scale Results Show Long-term Benefit

CGI-I & TSQM-9 Show Disease Improvement, Patient-Reported Benefit

Treatment Satisfaction Questionnaire for Medication-9

80

75

60

55

50

135

120

48

Study Week

Effectiveness

Crossed over

54

106

96

to ALXN1840

29

57

144

Safety

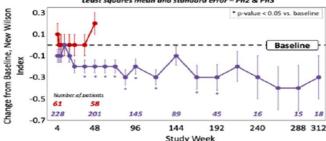

ALXN1840 has a Favorable Safety Profile

Table 2: Serious Adverse Events (SAEs) on	ALXN1840 data thru 01-Sep-20
N	266
Patient-years (PYs)	645.6
Patients with any ALXN1840-related SAEs	13 (4.9%)
Renal/Urinary System-related SAEs	0 (0%)
Liver-related SAEs	8 (3.0%)

- . Only 2 patients (0.8%) had ALXN1840-related renal/urinary AE
- No deaths occurred due to ALXN1840

61 Ph3 cross-over patients from SoC to ALXN1840 had no change in psychiatric AE rate: 4.3% (3/70, 62.4 PYs) vs. 4.9% (3/61, 55.4 PYs)

Fig 5: New Wilson Index Least squares mean and standard error - Ph2 & Ph3

New Wilson Index (based on bilirubin, AST, INR, leukocytes, albumin) improved for patients on ALXN1840 treatment over 6 years

Conclusions

Clinical data from 255 WD patients on ALXN1840 treatment show sustained clinical improvement over 6 years of treatment. Combined with long-term safety, this analysis supports the potential use of ALXN1840 as a treatment for Wilson disease.

References & Acknowledgements

The authors would like to thank the patients and their families for their participation in the studies, as well as all participating sites

Sustained Long-term Neurologic and Psychiatric Benefit

Neurologic benefit reproduced across independent trials

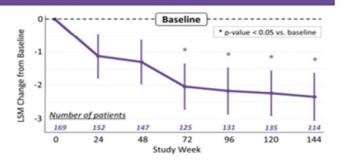
UWDRS Minimum Clinically Important Difference (MCID)

- Previous studies have reported a Part III MCID of 4 6.9 pts²⁻⁴
- Calculated UWDRS Part III MCID from Ph2 & Ph3 (n=255): 4.69 pts

UWDRS Part III (Physician-assessed)

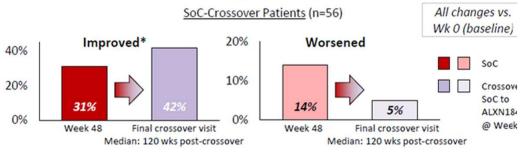
MCID responder rate (change from baseline to Week 48) - Ph2 & Ph3

	ALXN1840			SoC	
Study ID (n enrolled)	201 (n=29)	205 (n=31)	301** (n=137)	ISE (n=255)	301** (n=70)
Improved* (%)	94	57	45	50	32
Worsened (%)	5	4	8	7	13


^{*}Calculated from patients eligible to improve (baseline score ≥ MCID)

Sustained psychiatric benefit

Brief Psychiatric Rating Scale


(Clinician-assessed)

Least squares mean (LSM) ± standard error - Ph3

Patients who switch from SoC to ALXN1840 further improve

Mean △ from Wk 0*:

Favorable safety profile

Adverse Events

Data through 01-Sep-2022 Ph2 & Ph3

Drug-related Serious Adverse Events (SAEs)		
Number of patients	266	
Total patient-years (PYs)	645.6	
Patients with any drug-related SAEs	13 (4.9%)	
Patients with drug-related neurological SAEs	2 (0.8%)	
Patients with drug-related psychiatric SAEs	1 (0.4%)	

M. Lorincz¹, A. Poujois², C. Robinson³, D. Tuffy³, A. Kelly³, T. Litwin⁴, A. Członkowska⁴

¹University of Michigan Health System, Ann Arbor, United States; ²Department of Neurology, Rothschild Foundation Hospital, Paris, France; ³Monopar Therapeutics, Wilmette, United States; 42nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland.

Source: Lorincz M et al. Poster presented at: ANA 2025; September, 2025; Baltimore, MD.

^{**} Physician rater-blinded

^{*}Calculated from patients eligible to improve (baseline score ≥ MCID)

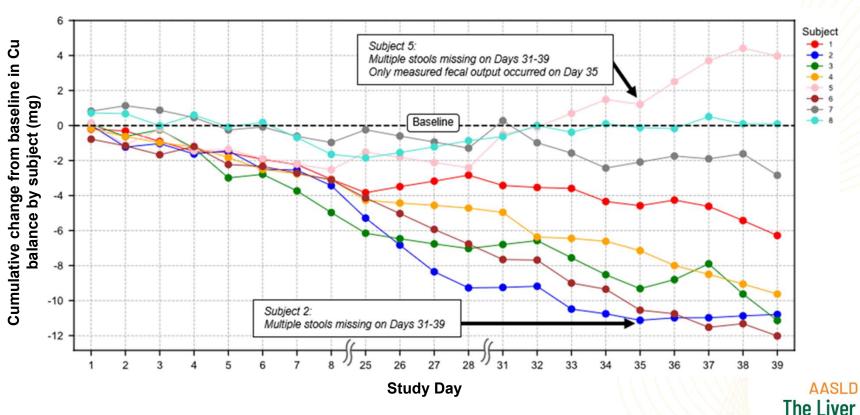
Copper Balance in Patients with Wison Disease

Efficacy End Point: Mean Daily Cu balance

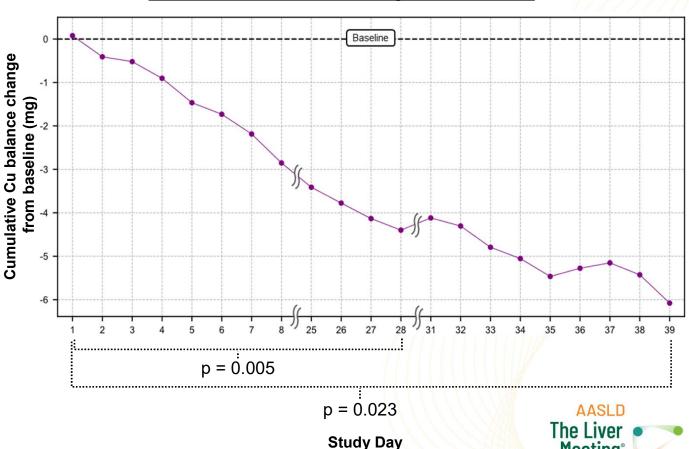
= Cu intake (food and drink) - Cu output (feces + urine)

Copper Balance Study Baseline Demographics and Characteristics

Enrolled Wilson Disease Subjects (n=9) [†]		
Demographics		
Clinical site location United Kingdom (Richmond Pharmacology Ltd) New Zealand (University of Auckland)	6 (66.7%) 3 (33.3%)	
Male sex	7 (77.8%)	
Race White Asian	8 (88.9%) 1 (11.1%)	
Age, mean (SD)	34.1 (12.0) years	
Baseline characteristics		
Time since WD diagnosis, mean (SD)	15.1 (16.2) years	
Prior WD therapy Penicillamine (± zinc) Trientine (± zinc) Penicillamine + trientine (± zinc) Zinc monotherapy None	5 (55.6%) 1 (11.1%) 1 (11.1%) 1 (11.1%) 1 (11.1%)	
Cirrhosis at baseline Absent Present Unknown	5 (55.6%) 3 (33.3%) 1 (11.1%)	
†One subject was withdrawn on Study Day 3 due to failure to discontinu	ue standard-of-care therapy.	


Cu Balance Study Design (ALXN1840-WD-204) IN WILSON DISEASE PATIENTS

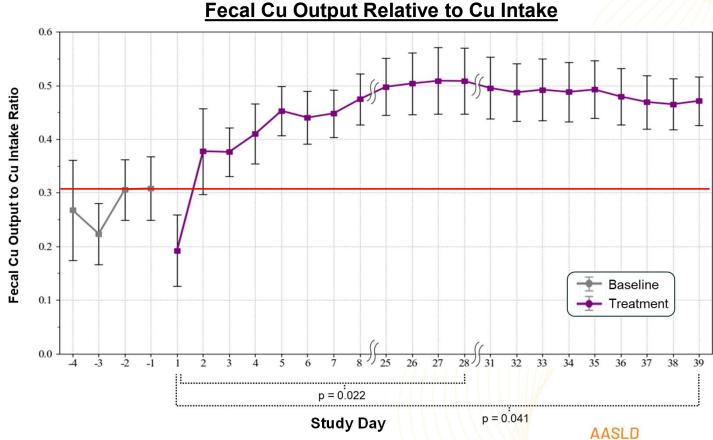
Encouraging Patient-Level Improvement in Copper Balance


Cu Balance Cumulative Change from Baseline per Subject

Rapid Significant, Sustained Improvement in Copper Balance on ALXN1840

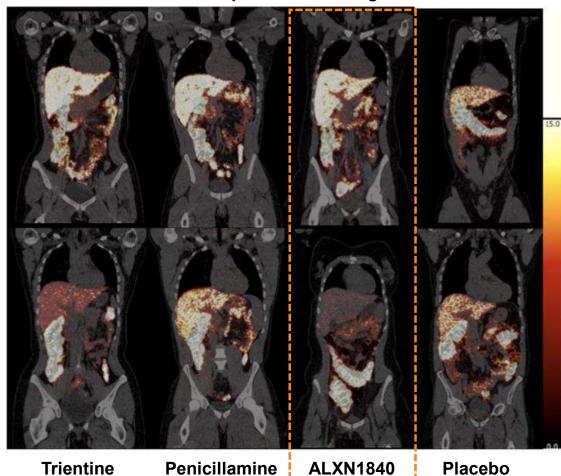
Cu Balance Cumulative Change from Baseline

Increased fecal Cu excretion results in **statistically** significantly improved Cu balance on ALXN1840



12

ALXN1840 Statistically Significantly Increases Human Fecal Copper Excretion


ALXN1840 treatment significantly increased fecal Cu excretion by ~50% vs. pre-treatment baseline (red line)

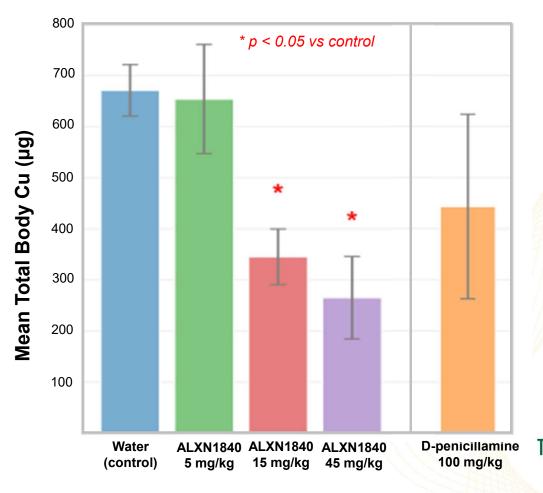
Data presented as a rolling average and error bars represent standard error about the mean

ALXN1840 Strongly Blocks Dietary Copper Uptake in Humans

15 hours post oral ⁶⁴Cu ingestion

Post-Treatment

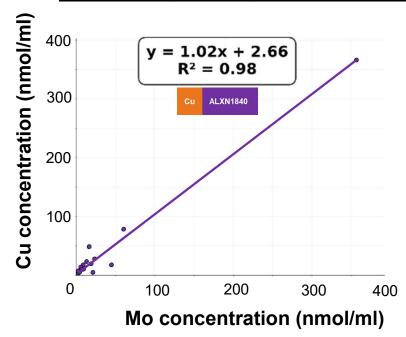
Pre-Treatment


The Liver Meeting®

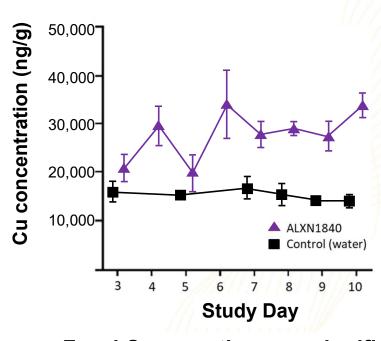
AASLD

Marked Decrease in *Total Body Copper* in WD Mice on ALXN1840 at 8 weeks

Total body Cu is **significantly lower** after 8 weeks in WD
mice treated with ALXN1840


(n = 5 mice per group)

AASLD
The Liver
Meeting*


MoA: Oral ALXN1840 Induces 1:1 Biliary Excretion with Cu in WD Rats

Cu and Mo (nmol/ml) Correlation in Bile¹

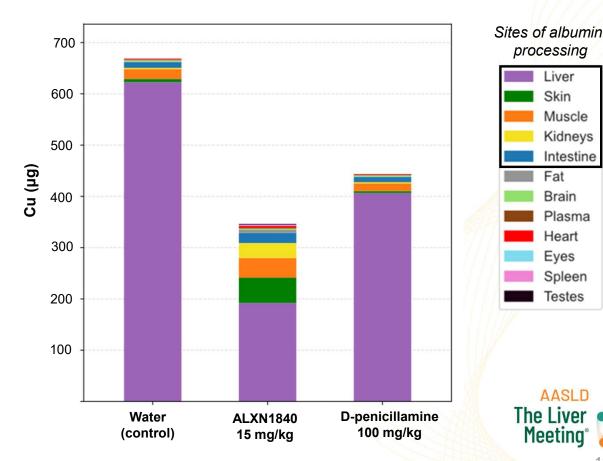
Once bound, Cu-ALXN1840 is **excreted intact in bile at a 1:1 molar ratio** (p < 0.001) in WD rats, consistent with literature.²

Fecal Cu (ng/g)¹

Fecal Cu excretion was significantly increased with ALXN1840 vs. control

^{1.} Source: RTR-0052 Additional Analyses – Alexion Pharmaceuticals Preclinical Study in Long Evans Cinnamon (LEC) Rat model 2. Komatsu et al. Chem Biol Interact. 2000 Feb;124(3):217-231

Supportive New ALXN1840 Data



Cu Transits Through Sites of Albumin Processing – Does Not Accumulate

Total Body Cu (ug) at Week 81

Cu transits with albumin (as ALXN1840-Cu-albumin complex) through sites of albumin processing before excretion in WD mice

Albumin processing includes catabolism, FcRn recycling, degradation, and renal reabsorption²⁻⁴

^{1.} Source: RTR-0051 Additional Analysis - Alexion Pharmaceuticals Preclinical Study in WD Mice (Toxic Milk Mouse model);

Liver

Skin Muscle

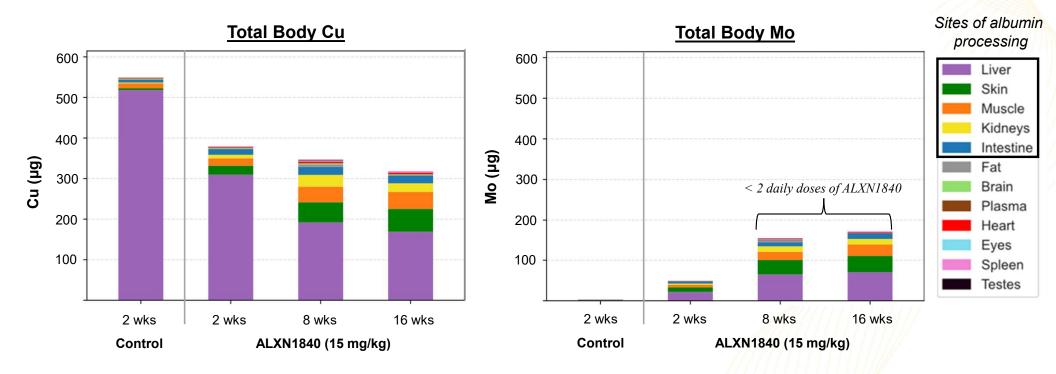
Kidneys

Intestine

Fat

Brain Plasma

Heart

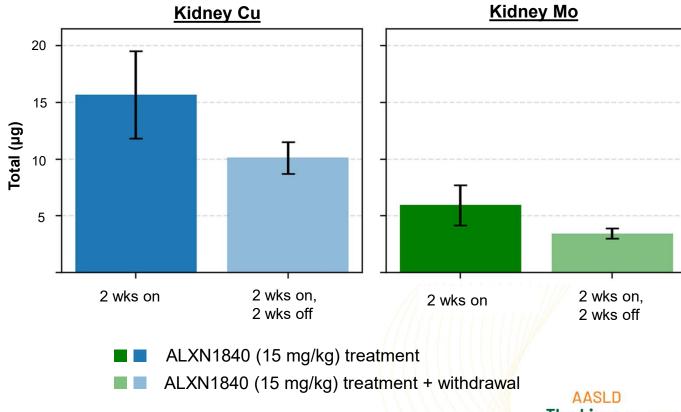

Eyes Spleen **Testes**

AASLD

Meeting

^{2.} Levitt G et al. Int J Gen Med. 2016;9:229-55; 3. Baynes JW et al. Arch Biochem Biophys. 1981;206(2):372-9; 4. Yedgar S et al. Am J Physiol. 1983;244(1):E101-7.

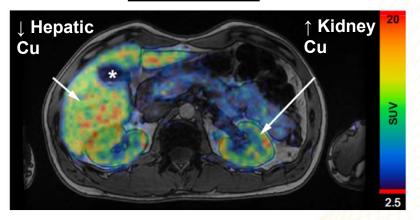
Mo Transits Thru Sites of Albumin Processing – Does Not Accumulate



Molybdenum and copper **travel together**; after 112 days of daily dosing, < 2 daily doses worth of ALXN1840 (Mo) is present in mice

Cu and Mo (ALXN1840) Transit Thru Tissue is Non-toxic and Reversible

After a 2-week withdrawal period in WD mice, kidney Cu and Mo levels decrease in parallel



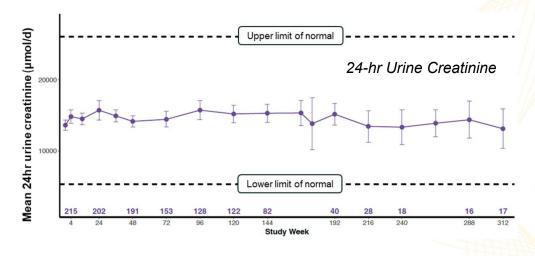
Clinical Data Corroborate Nonclinical Findings; TPC Transit Appears Safe

Before ALXN1840

Hepatic Cu Cu

After ALXN1840

ALXN1840 blocks Cu uptake in liver¹; transits through the kidney in a manner that appears safe


Drug-related Adverse Events ²		
Number of patients	266	
Patient-years (PYs)	645.6	
Renal/urinary SAEs	0 (0%)	
Renal/urinary AEs	2 (0.8%)	

No Impact on Kidney Function in Humans Across 6 Years of Treatment

Mean serum creatinine (top) and mean 24-hour urine creatinine (bottom) were within normal limits across 6 years on ALXN1840

The Liver Meeting*

Clean SAE Profile at Sites of Albumin Processing

SAEs from Phase 3 Clinical Trial (48-weeks)

	All SAEs		Related only	
System Organ Class	ALXN1840 (n=137)	SoC (n=70)	ALXN1840 (n=137)	SoC (n=70)
Gastrointestinal disorders	1 (0.7%)	2 (2.9%)	0	0
Musculoskeletal and connective tissue disorders	1 (0.7%)	2 (2.9%)	0	0
Renal and urinary disorders	0	0	0	0
Skin and subcutaneous tissue disorders	0	0	0	0

Key Take-aways

ALXN1840 improves copper balance in Wilson disease patients through increased fecal copper excretion

Demonstrated in humans a potent blocking of dietary copper uptake

Pre-clinical studies demonstrate reduction in total body Cu and biliary co-excretion of Cu-ALXN1840 (Mo) complex

New Sponsor is planning to submit an NDA in early 2026

